Pruebas en un entorno real
Pruebe en producción sin marcas de agua.
Funciona donde lo necesites.
Machine learning (ML) has revolutionized various industries, from healthcare to finance, by enabling intelligent decision-making and automation. TensorFlow, Google's open-source ML and deep learning framework, has been at the forefront of this revolution. With `TensorFlow.NET`, .NET developers can harness the power of TensorFlow within the C# ecosystem. In this article, we'll explore `TensorFlow.NET`, its features, benefits, and practical applications in C# development. Also, we will learn about a PDF generation library called `IronPDF` from `Iron Software` with a practical example.
## Understanding TensorFlow.NET
`TensorFlow.NET` is a .NET binding for TensorFlow, allowing developers to use TensorFlow functionality directly within C# and .NET application layers. Developed by the community and maintained by the SciSharp organization, `TensorFlow.NET` provides a seamless integration of TensorFlow's machine learning and neural networks' capabilities with the versatility of the .NET platform. It enables C# developers to build neural networks, train models, or training images, and deploy ML models using TensorFlow's extensive system APIs and tools.
## Key Features of TensorFlow.NET
1. **TensorFlow Compatibility**: `TensorFlow.NET` provides full compatibility with TensorFlow's APIs and operations, including tensor manipulation or activation, neural network layers, loss functions, optimizers, and utilities for data preprocessing and evaluation.
2. **High Performance**: `TensorFlow.NET` leverages TensorFlow's efficient computational graph execution engine and optimized kernels to deliver high-performance machine learning inference and training on CPUs and GPUs.
3. **Easy Integration**: `TensorFlow.NET` seamlessly integrates with existing .NET applications and libraries, enabling developers to leverage TensorFlow's capabilities without leaving the familiar C# development environment.
4. **Model Portability**: `TensorFlow.NET` allows developers to import pre-trained TensorFlow models and export trained models for inference in other TensorFlow-based environments, such as Python or mobile devices.
5. **Flexibility and Extensibility**: `TensorFlow.NET` provides flexibility for customizing and extending machine learning models using C# language features, such as LINQ (Language Integrated Query) for data manipulation and functional programming paradigms for model composition.
6. **Community Support and Documentation**: `TensorFlow.NET` benefits from an active community of contributors who provide documentation, tutorials, and examples to help developers get started with machine learning in the C# world using TensorFlow.
## Practical Examples with TensorFlow.NET
Let's explore some practical scenarios where `TensorFlow.NET` can be used to build and deploy machine learning models in C#:
1. **Loading and Using Pre-trained Models**:
```cs
// Load a pre-trained TensorFlow model
var model = TensorFlowModel.LoadModel("model.pb");
// Perform inference on input data
var input = new float[,] { { 1.0f, 2.0f, 3.0f } };
var output = model.Predict(input);
// Create a neural network model using TensorFlow.NET APIs and metrics
var input = new Input(Shape.Scalar);
var output = new Dense(1, Activation.ReLU).Forward(input);
// Compile the model with loss function and optimizer algorithms
var model = new Model(input, output);
model.Compile(optimizer: new SGD(), loss: Losses.MeanSquaredError);
// Train the model with training data just like Python
model.Fit(x_train, y_train, epochs: 10, batchSize: 32);
// Create a neural network model using TensorFlow.NET APIs and metrics
var input = new Input(Shape.Scalar);
var output = new Dense(1, Activation.ReLU).Forward(input);
// Compile the model with loss function and optimizer algorithms
var model = new Model(input, output);
model.Compile(optimizer: new SGD(), loss: Losses.MeanSquaredError);
// Train the model with training data just like Python
model.Fit(x_train, y_train, epochs: 10, batchSize: 32);
IRON VB CONVERTER ERROR developers@ironsoftware.com
// Evaluate the trained model on test data
var evaluation = model.Evaluate(x_test, y_test);
// Export the trained model for deployment
model.SaveModel("trained_model.pb");
// Evaluate the trained model on test data
var evaluation = model.Evaluate(x_test, y_test);
// Export the trained model for deployment
model.SaveModel("trained_model.pb");
IRON VB CONVERTER ERROR developers@ironsoftware.com
Puede encontrar más ejemplos de TensorFlow en la página de ejemplos.
// static Tensorflow
using static Tensorflow.Binding;
namespace IronPdfDemos
{
public class TensorFlow
{
public static void Execute()
{
var hello = tf.constant("Hello, TensorFlow!");
Console.WriteLine(hello);
}
}
}
// static Tensorflow
using static Tensorflow.Binding;
namespace IronPdfDemos
{
public class TensorFlow
{
public static void Execute()
{
var hello = tf.constant("Hello, TensorFlow!");
Console.WriteLine(hello);
}
}
}
' static Tensorflow
Imports Tensorflow.Binding
Namespace IronPdfDemos
Public Class TensorFlow
Public Shared Sub Execute()
Dim hello = tf.constant("Hello, TensorFlow!")
Console.WriteLine(hello)
End Sub
End Class
End Namespace
Ejemplo de salida de Hello TensorFlow
Integración sin fisuras: TensorFlow.NET
lleva la potencia de TensorFlow al ecosistema .NET, permitiendo a los desarrolladores de C# aprovechar las técnicas y algoritmos de aprendizaje automático más avanzados en sus aplicaciones.
Rendimiento y escalabilidad: TensorFlow.NET
aprovecha el motor de ejecución optimizado de TensorFlow para ofrecer cálculos de aprendizaje automático de alto rendimiento, lo que lo hace adecuado para manejar conjuntos de datos a gran escala, imágenes de prueba y modelos complejos o densos.
Entorno de desarrollo familiar: la API TensorFlow.NET
permite a los desarrolladores construir e implantar modelos de aprendizaje automático utilizando características y herramientas de desarrollo del lenguaje C# que les resultan familiares, lo que reduce la curva de aprendizaje para adoptar el aprendizaje automático en aplicaciones C#.
Interoperabilidad y portabilidad: TensorFlow.NET
facilita la interoperabilidad con otros entornos basados en TensorFlow, permitiendo una integración perfecta de modelos de aprendizaje automático basados en C# con Python, TensorFlow Serving y TensorFlow Lite.
TensorFlow.NET
se beneficia de una comunidad activa de colaboradores y usuarios que proporcionan apoyo, comentarios y contribuciones al proyecto, asegurando su continuo crecimiento y mejora.Se trata de un paquete de código abierto con licencia Apache que puede utilizarse libremente. Más información sobre la licencia en la página de la licencia.
ironPDF es una potente biblioteca PDF en C# que permite a los desarrolladores crear, editar y firmar archivos PDF directamente a partir de entradas HTML, CSS, imágenes y JavaScript. Es una solución comercial de alto rendimiento y bajo consumo de memoria. Estas son algunas de sus principales características:
Conversión de HTML a PDF: IronPDF
puede convertir archivos HTML, cadenas HTML y URLs a PDFs. Por ejemplo, puedes renderizar una página web como PDF utilizando el renderizador de PDF de Chrome.
Soporte multiplataforma: IronPDF
funciona en varias plataformas .NET, incluidas .NET Core, .NET Standard y .NET Framework. Es compatible con Windows, Linux y macOS.
Edición y firma: Puede establecer propiedades, añadir seguridad (contraseñas y permisos)e incluso aplicar firmas digitales a tus PDF.
Plantillas de página y configuración: Personaliza tus PDF añadiendo encabezados, pies de página y números de página, y ajustando los márgenes. ironPDF también admite diseños adaptables y tamaños de papel personalizados.
En primer lugar, cree un proyecto de Visual Studio y seleccione la siguiente plantilla de aplicación de consola.
Indique el nombre y la ubicación del proyecto.
Seleccione la versión .NET necesaria en el siguiente paso y haga clic en el botón Crear.
Instale IronPDF
desde el paquete NuGet del gestor de paquetes de Visual Studio.
Instala los paquetes TensorFlow.NET
y TensorFlow.Keras
, un paquete independiente utilizado para ejecutar modelos.
using IronPdf;
using static Tensorflow.Binding;
namespace IronPdfDemos
{
public class Program
{
public static void Main()
{
// Instantiate Cache and ChromePdfRenderer
var renderer = new ChromePdfRenderer();
// Prepare HTML
var content = "<h1>Demonstrate TensorFlow with IronPDF</h1>";
content += $"<p></p>";
content += $"<h2></h2>";
// Eager mode
content += $"<h2>Enable Eager Execution</h2>";
content += $"<p>tf.enable_eager_execution();</p>";
// tf is a static TensorFlow instance
tf.enable_eager_execution(); // Enable eager mode
content += $"<h2>Define tensor constants.</h2>";
// Introduce tensor constants
var a = tf.constant(5);
var b = tf.constant(6);
var c = tf.constant(7);
content += $"<p></p>";
content += $"<p></p>";
content += $"<p></p>";
content += $"<h2>Various tensor operations.</h2>";
// Various tensor operations usage
// Note: Tensors also support operators (+, *, ...)
var add = tf.add(a, b);
var sub = tf.subtract(a, b);
var mul = tf.multiply(a, b);
var div = tf.divide(a, b);
content += $"<p>var add = tf.add(a, b);</p>";
content += $"<p>var sub = tf.subtract(a, b);</p>";
content += $"<p>var mul = tf.multiply(a, b);</p>";
content += $"<p>var div = tf.divide(a, b);</p>";
content += $"<h2>Access tensors value.</h2>";
// Tensors value
print($"{(int)a} + {(int)b} = {(int)add}");
print($"{(int)a} - {(int)b} = {(int)sub}");
print($"{(int)a} * {(int)b} = {(int)mul}");
print($"{(int)a} / {(int)b} = {(double)div}");
content += $"<p>{(int)a} + {(int)b} = {(int)add}</p>";
content += $"<p>{(int)a} - {(int)b} = {(int)sub}</p>";
content += $"<p>{(int)a} * {(int)b} = {(int)mul}</p>";
content += $"<p>{(int)a} / {(int)b} = {(double)div}</p>";
// Some more operations
var mean = tf.reduce_mean(tf.constant(new[] { a, b, c }));
var sum = tf.reduce_sum(tf.constant(new[] { a, b, c }));
content += $"<h2>Access tensors value.</h2>";
// Access tensors value
print("mean =", mean.numpy());
print("sum =", sum.numpy());
content += $"<p>mean = {mean.numpy()}</p>";
content += $"<p>sum = {sum.numpy()}</p>";
content += $"<h2>Matrix multiplications.</h2>";
// Matrix multiplications with a single row
var matrix1 = tf.constant(new float[,] { { 1, 2 }, { 3, 4 } });
var matrix2 = tf.constant(new float[,] { { 5, 6 }, { 7, 8 } });
var product = tf.matmul(matrix1, matrix2);
content += "<p>matrix1 = tf.constant(new float[,] { { { 1, 2 }}, { { 3, 4 }} })</p>";
content += "<p>matrix2 = tf.constant(new float[,] { { { 5, 6 }}, { { 7, 8 }} })</p>";
content += "<p>product = tf.matmul(matrix1, matrix2)</p>";
content += $"<h2>Convert Tensor to Numpy.</h2>";
// Convert Tensor to Numpy
print("product =", product.numpy());
content += $"<p>product = {product.numpy()}</p>";
// Create a PDF from an HTML string using C#
var pdf = renderer.RenderHtmlAsPdf(content);
// Export to a file or Stream
pdf.SaveAs("tensorflow.pdf");
}
}
}
using IronPdf;
using static Tensorflow.Binding;
namespace IronPdfDemos
{
public class Program
{
public static void Main()
{
// Instantiate Cache and ChromePdfRenderer
var renderer = new ChromePdfRenderer();
// Prepare HTML
var content = "<h1>Demonstrate TensorFlow with IronPDF</h1>";
content += $"<p></p>";
content += $"<h2></h2>";
// Eager mode
content += $"<h2>Enable Eager Execution</h2>";
content += $"<p>tf.enable_eager_execution();</p>";
// tf is a static TensorFlow instance
tf.enable_eager_execution(); // Enable eager mode
content += $"<h2>Define tensor constants.</h2>";
// Introduce tensor constants
var a = tf.constant(5);
var b = tf.constant(6);
var c = tf.constant(7);
content += $"<p></p>";
content += $"<p></p>";
content += $"<p></p>";
content += $"<h2>Various tensor operations.</h2>";
// Various tensor operations usage
// Note: Tensors also support operators (+, *, ...)
var add = tf.add(a, b);
var sub = tf.subtract(a, b);
var mul = tf.multiply(a, b);
var div = tf.divide(a, b);
content += $"<p>var add = tf.add(a, b);</p>";
content += $"<p>var sub = tf.subtract(a, b);</p>";
content += $"<p>var mul = tf.multiply(a, b);</p>";
content += $"<p>var div = tf.divide(a, b);</p>";
content += $"<h2>Access tensors value.</h2>";
// Tensors value
print($"{(int)a} + {(int)b} = {(int)add}");
print($"{(int)a} - {(int)b} = {(int)sub}");
print($"{(int)a} * {(int)b} = {(int)mul}");
print($"{(int)a} / {(int)b} = {(double)div}");
content += $"<p>{(int)a} + {(int)b} = {(int)add}</p>";
content += $"<p>{(int)a} - {(int)b} = {(int)sub}</p>";
content += $"<p>{(int)a} * {(int)b} = {(int)mul}</p>";
content += $"<p>{(int)a} / {(int)b} = {(double)div}</p>";
// Some more operations
var mean = tf.reduce_mean(tf.constant(new[] { a, b, c }));
var sum = tf.reduce_sum(tf.constant(new[] { a, b, c }));
content += $"<h2>Access tensors value.</h2>";
// Access tensors value
print("mean =", mean.numpy());
print("sum =", sum.numpy());
content += $"<p>mean = {mean.numpy()}</p>";
content += $"<p>sum = {sum.numpy()}</p>";
content += $"<h2>Matrix multiplications.</h2>";
// Matrix multiplications with a single row
var matrix1 = tf.constant(new float[,] { { 1, 2 }, { 3, 4 } });
var matrix2 = tf.constant(new float[,] { { 5, 6 }, { 7, 8 } });
var product = tf.matmul(matrix1, matrix2);
content += "<p>matrix1 = tf.constant(new float[,] { { { 1, 2 }}, { { 3, 4 }} })</p>";
content += "<p>matrix2 = tf.constant(new float[,] { { { 5, 6 }}, { { 7, 8 }} })</p>";
content += "<p>product = tf.matmul(matrix1, matrix2)</p>";
content += $"<h2>Convert Tensor to Numpy.</h2>";
// Convert Tensor to Numpy
print("product =", product.numpy());
content += $"<p>product = {product.numpy()}</p>";
// Create a PDF from an HTML string using C#
var pdf = renderer.RenderHtmlAsPdf(content);
// Export to a file or Stream
pdf.SaveAs("tensorflow.pdf");
}
}
}
Imports IronPdf
Imports Tensorflow.Binding
Namespace IronPdfDemos
Public Class Program
Public Shared Sub Main()
' Instantiate Cache and ChromePdfRenderer
Dim renderer = New ChromePdfRenderer()
' Prepare HTML
Dim content = "<h1>Demonstrate TensorFlow with IronPDF</h1>"
content &= $"<p></p>"
content &= $"<h2></h2>"
' Eager mode
content &= $"<h2>Enable Eager Execution</h2>"
content &= $"<p>tf.enable_eager_execution();</p>"
' tf is a static TensorFlow instance
tf.enable_eager_execution() ' Enable eager mode
content &= $"<h2>Define tensor constants.</h2>"
' Introduce tensor constants
Dim a = tf.constant(5)
Dim b = tf.constant(6)
Dim c = tf.constant(7)
content &= $"<p></p>"
content &= $"<p></p>"
content &= $"<p></p>"
content &= $"<h2>Various tensor operations.</h2>"
' Various tensor operations usage
' Note: Tensors also support operators (+, *, ...)
Dim add = tf.add(a, b)
Dim [sub] = tf.subtract(a, b)
Dim mul = tf.multiply(a, b)
Dim div = tf.divide(a, b)
content &= $"<p>var add = tf.add(a, b);</p>"
content &= $"<p>var sub = tf.subtract(a, b);</p>"
content &= $"<p>var mul = tf.multiply(a, b);</p>"
content &= $"<p>var div = tf.divide(a, b);</p>"
content &= $"<h2>Access tensors value.</h2>"
' Tensors value
print($"{CInt(a)} + {CInt(b)} = {CInt(add)}")
print($"{CInt(a)} - {CInt(b)} = {CInt([sub])}")
print($"{CInt(a)} * {CInt(b)} = {CInt(mul)}")
print($"{CInt(a)} / {CInt(b)} = {CDbl(div)}")
content &= $"<p>{CInt(a)} + {CInt(b)} = {CInt(add)}</p>"
content &= $"<p>{CInt(a)} - {CInt(b)} = {CInt([sub])}</p>"
content &= $"<p>{CInt(a)} * {CInt(b)} = {CInt(mul)}</p>"
content &= $"<p>{CInt(a)} / {CInt(b)} = {CDbl(div)}</p>"
' Some more operations
Dim mean = tf.reduce_mean(tf.constant( { a, b, c }))
Dim sum = tf.reduce_sum(tf.constant( { a, b, c }))
content &= $"<h2>Access tensors value.</h2>"
' Access tensors value
print("mean =", mean.numpy())
print("sum =", sum.numpy())
content &= $"<p>mean = {mean.numpy()}</p>"
content &= $"<p>sum = {sum.numpy()}</p>"
content &= $"<h2>Matrix multiplications.</h2>"
' Matrix multiplications with a single row
Dim matrix1 = tf.constant(New Single(, ) {
{ 1, 2 },
{ 3, 4 }
})
Dim matrix2 = tf.constant(New Single(, ) {
{ 5, 6 },
{ 7, 8 }
})
Dim product = tf.matmul(matrix1, matrix2)
content &= "<p>matrix1 = tf.constant(new float[,] { { { 1, 2 }}, { { 3, 4 }} })</p>"
content &= "<p>matrix2 = tf.constant(new float[,] { { { 5, 6 }}, { { 7, 8 }} })</p>"
content &= "<p>product = tf.matmul(matrix1, matrix2)</p>"
content &= $"<h2>Convert Tensor to Numpy.</h2>"
' Convert Tensor to Numpy
print("product =", product.numpy())
content &= $"<p>product = {product.numpy()}</p>"
' Create a PDF from an HTML string using C#
Dim pdf = renderer.RenderHtmlAsPdf(content)
' Export to a file or Stream
pdf.SaveAs("tensorflow.pdf")
End Sub
End Class
End Namespace
Desglosemos el fragmento de código:
Declaraciones de importación:
El código comienza importando las bibliotecas necesarias. Específicamente:
using IronPdf; // This imports the IronPDF package, which is used for working with PDF files.
using static Tensorflow.Binding; // This imports the TensorFlow library, specifically the .NET standard binding.
using IronPdf; // This imports the IronPDF package, which is used for working with PDF files.
using static Tensorflow.Binding; // This imports the TensorFlow library, specifically the .NET standard binding.
IRON VB CONVERTER ERROR developers@ironsoftware.com
Ejecución ansiosa:
La línea `tf.enable_eager_execution()activa el modo de ejecución eager de TensorFlow. En la ejecución ansiosa, las operaciones se evalúan inmediatamente, lo que facilita la depuración y la interacción con los tensores.
Definir Constantes de Tensor:
El código define tres constantes tensoriales: `a`, `b` y `c`. Se inicializan con los valores 5, 6 y 7, respectivamente.
Varias operaciones tensoriales:
Se realizan las siguientes operaciones tensoriales:
var add = tf.add(a, b); // Adds a and b.
var sub = tf.subtract(a, b); // Subtracts b from a.
var mul = tf.multiply(a, b); // Multiplies a and b.
var div = tf.divide(a, b); // Divides a by b.
var add = tf.add(a, b); // Adds a and b.
var sub = tf.subtract(a, b); // Subtracts b from a.
var mul = tf.multiply(a, b); // Multiplies a and b.
var div = tf.divide(a, b); // Divides a by b.
IRON VB CONVERTER ERROR developers@ironsoftware.com
Acceder a los valores del tensor:
Los resultados de las operaciones tensoriales se imprimen utilizando la función `print`:
print($"{(int)a} + {(int)b} = {(int)add}");
print($"{(int)a} - {(int)b} = {(int)sub}");
print($"{(int)a} * {(int)b} = {(int)mul}");
print($"{(int)a} / {(int)b} = {(double)div}");
print($"{(int)a} + {(int)b} = {(int)add}");
print($"{(int)a} - {(int)b} = {(int)sub}");
print($"{(int)a} * {(int)b} = {(int)mul}");
print($"{(int)a} / {(int)b} = {(double)div}");
IRON VB CONVERTER ERROR developers@ironsoftware.com
Ejemplo de salida:
- 5 + 6 = 11
- 5 - 6 = -1
- 5 * 6 = 30
- 5 / 6 = 0.8333333333333334
Operaciones adicionales:
El código calcula la media y la suma de las constantes `[a, b, c]`.
Generación de PDF:
`ChromePdfRenderer` y `RenderHtmlAsPdf` de `IronPDF` se utilizan para convertir la cadena HTML en un documento PDF.
ironPDFnecesita una licencia para funcionar. Encontrará más información sobre licencias en la página de licencias. Coloque la clave en el archivo
appSettings.json` como se muestra a continuación.
{
"IronPdf.License.LicenseKey": "The Key Here"
}
En conclusión, TensorFlow.NET
permite a los desarrolladores de C# explorar el mundo del aprendizaje automático y la inteligencia artificial con la versatilidad y productividad del ecosistema .NET. Tanto si está creando aplicaciones inteligentes, herramientas de análisis predictivo o sistemas automatizados de toma de decisiones, TensorFlow.NET
proporciona un marco potente y flexible para liberar el potencial del aprendizaje automático en C#. Junto con la biblioteca IronPDF
de Iron Software
para leer y generar documentos PDF, los desarrolladores pueden adquirir conocimientos avanzados para desarrollar aplicaciones modernas.
9 productos API .NET para sus documentos de oficina