
 IRONSOFTWARE
	PRODUCTS
	OPEN SOURCE
	ABOUT US
	CONTACT US

205 N. Michigan Ave. Chicago, IL 60611, USA
+1 (312) 500-3060
Join Iron Slack

Our Company
	About Us
	Company News
	Customers
	Environmental Commitments
	Beta Program
	Year in Review: 2022

Sales Partners
	Global Resellers
	Merchant of Record

Contact Us
	Live Chat

	Send an Email

+1 (312) 500-3060
205 N. Michigan Ave.
Chicago, IL 60611, USA

Careers at Iron
Join our teamWe're hiring

for .NET

JavaPythonNode.js

Create, read, and edit PDFs

for .NET

Edit DOCX Word Files
No Office Interop required

for .NET

Edit Excel & CSV Files.
No Office Interop required

for .NET

Image to text in 127 languages

for .NET

Read and write Barcodes

for .NET

Read & write QR codes with ML detection

for .NET

Zip and unzip archives

for .NET

Customized Printing of Files

for .NET

Extract structured data from websites

 All 9 for
the Price of 2 Save 77% with Iron Suite

for .NET

System.Drawing.Common Replacement

Free Software Development Tools

for
.NET
	.NET
	Java via gRPC
	Python via .NET
	Node.js via gRPC

	Home
	Licensing	Licensing
	EULA
	Support & Update Extensions
	License Upgrades
	Start Free Trial

	Features
	Docs	Get Started
	Demos
	Code Examples
	Tutorials
	How-Tos
	Troubleshooting
	Product Updates
	API Reference

Search
Ctrl
K

 Free NuGet DownloadTotal downloads: 8,434,114

for

.NET	.NET
	Java
	Python
	Node.js

	IRONSOFTWARE HOME
	PRODUCTS
	IRONSUITE

	

	IRONPDF
UPDATED

	IRONWORD

	IRONXL

	IRONOCR

	IRONBARCODE

	IRONQR

	IRONZIP

	IRONPRINT

	IRONWEBSCRAPER

	OPEN SOURCE
	IRONDRAWING

	IRONFREETOOLS

	ABOUT US
	About US

	Company News

	Environmental Commitments

	Beta Program

	Year in Review: 2022

	Live Chat

	Global Resellers

	Join our team

	CONTACT US

	HOME
	LICENSING
	Licensing
	EULA
	Support & Update Extensions
	License Upgrades
	

	Start Free Trial

	FEATURES
	DOCS
	Get Started
	Demos
	Code Examples
	Tutorials
	How-Tos
	Troubleshooting
	Product Updates
	

	API Reference

 PM >Install-Package IronPdf

	Get Started

	Demos

	Code Examples

	Tutorials 	HTML to PDF

	Generating PDFs in C#
	Editing PDFs in C#
	Viewing PDFs in MAUI

	How-Tos 	 Compatibility	Install & Deploy IronPDF
	License Keys
	Setup on macOS
	Setup on Docker
	Setup on Linux
	Setup on Azure
	Setup on AWS
	Setup on Android
	Coding with VB.NET
	Coding with F#
	Platform-Specific NuGet Packages
	Use Windows Installer
	Host your own IronPDF Container
	OpenAI for PDF

	 Generating PDFs	PDF from HTML File
	PDF from HTML String
	PDF from URL
	PDF from ASPX Pages
	PDF from Razor View
	PDF from ASP.NET MVC
	XAML to PDF (MAUI)
	Razor to PDF (Blazor Server)
	CSHTML to PDF (Razor Pages)
	CSHTML to PDF (MVC Core)
	CSHTML to PDF (MVC Framework)
	Image to PDF
	Image from PDF
	Convert DOCX to PDF
	Convert RTF to PDF
	Convert MD to PDF
	Convert XML to PDF
	PDF to HTML
	Add a Table of Contents
	Generate PDF Reports
	Create PDFs in MAUI
	Create PDFs in Blazor Servers
	Support UTF-8 and International Languages
	Base URLs & Asset Encoding
	TLS Website & System Logins
	Async & Multithreading
	Custom Logging
	Cookies
	Chrome PDF Rendering Engine

	 Formatting PDFs	Debug HTML with Chrome
	CSS (Screen & Print)
	Images (jpg, png, svg, gif, etc)
	JavaScript (Custom Render Delays)
	Use WaitFor to Delay PDF Render
	Fonts (Web & Icon)
	Use SVG Graphics
	Add Page Numbers
	Page Breaks
	Fit to Paper & Zoom
	Set Custom Margins
	Custom Paper Size
	Orientation & Rotation
	Grayscale
	Embed Images with DataURIs
	Embed Images from Azure Blob Storage
	Export PDF/A Format Docs in C#
	Export PDF/UA Format Docs in C#

	 Editing PDFs	Save & Export PDF Documents
	Load & Export PDFs to Memory
	Set PDF Passwords and Permissions
	Signing PDFs
	PDF Compression
	Set & Edit Metadata
	Edit & Sign Revision History
	Add, Copy & Delete PDF Pages
	Merge or Split PDFs
	Rotate Text and Pages
	Print PDFs Programmatically
	View PDFs in a .NET Application
	Read PDF Documents in C#
	Parse PDFs in C#
	Add Cover Page to PDF
	Flatten PDF Images
	Add Stamp to PDFs in C#
	Split Multipage PDF
	Add & Edit Annotations
	Add & Remove Attachments
	Outlines & Bookmarks
	Manage Fonts
	Draw Text & Bitmap
	Draw Line & Rectangle
	Replace Text in PDF
	Add Headers & Footers
	Stamp Text & Images
	Custom Watermarks
	Backgrounds & Foregrounds
	Create PDF Forms
	Fill & Edit PDF Forms
	Print to a Physical Printer
	Extract Text & Images

	Troubleshooting 	 Contacting Technical Support	How to Make an Engineering Support Request for IronPDF
	Getting the Best Support for IronPDF

	 Deployment	Visual C++ Redistributable for Visual Studio
	AWS Lambda / Amazon Linux 2
	IronCefSubprocess
	Debugging Azure Functions Project on Local Machine
	Windows Nano Server / Servercore in .Net6 do not support System.Drawing
	IronPDF Runtimes Folder
	Adding IronPDF to a software program installer
	Red Hat Enterprise Linux (RHEL) support

	 Common Questions	Bootstrap / Flex / CSS
	Azure Plans and Tiers
	Initial render is slow
	Font Kerning
	Windows Server Support
	Pixel Perfect HTML Formatting
	What version of IronPDF should I use?
	IronPDF Package Size
	Fonts
	Quick IronPDF Troubleshooting
	IronPDF Performance Assistance
	Azure Log Files
	AWS Log Files
	Render Delay & Timeout
	Large Output Files Using ImageToPDF
	Memory Leak in IronPDF
	Log4j
	Convert PDF to Base64
	IronPDF - Security CVE
	IronPDF 'using' Declaration
	IronPDF - _blank hyperlinks in a PDF open in same browser tab
	PDF File Versions
	IronPdf.Slim
	IronPdf.Linux

	 Troubleshooting Guides	Apply a license key in IronPDF
	Azure Blob Storage
	Blazor Server / WebAssembly (WASM)
	Digital Signatures
	Headers/Footers and Page Breaks
	International Languages and CMJK
	IronPdf and IIS
	Kerberos
	MetaData Visibility
	Print From Network Printer
	Rasterize to Image using MemoryStream
	Render view to string
	System.Drawing.Common Alternatives (.NET 7 & Non-Windows)
	Table Headers

	 Exception Messages	Access to the path 'Global-IronSoftwareDeploymentGlobal' is denied
	502 Bad Gateway
	Error while deploying Chrome dependencies
	Error while deploying Pdfium dependencies
	Error while opening document from bytes: 'bad allocation'
	Failed to deploy NuGet package
	GPU process isn't usable
	Invalid CefExecuteProcess return code of 0
	IronPDF can not open / parse a specific PDF file
	IronPDF Native Exception
	IronPdfAssemblyVersionMismatchException
	Network service crashed, restarting service
	No function was found with the name SetLogEvent with error code (127)
	Registry is not supported on this platform
	Timeout while rendering PDF
	Unhandled case for AdaptiveRenderEngine

	Product Updates 	Changelog
	Milestones
	Milestone: Chrome Rendering
	Milestone: PDFium DOM
	Milestone: Compatibility
	Milestone: Stability & Performance

	API Reference

	IronPDF
	Tutorials
	HTML to PDF C# Conversion

HTML to PDF C# Conversion
As the developers of IronPDF, we understand that PDF documents made by IronPDF not only need look perfect, but also need to look exactly how our customers expect them to. In this C# PDF tutorial will teach you how to build an HTML to PDF converter in your C# applications, projects, and websites. We will build a C# html-to-pdf converter. The output PDF documents from IronPDF are pixel identical to the PDF functionality in a Google Chrome web browser.
Using the IronPDF C# Library we will:
	Create a PDF document from HTML string or HTML file as the 'content' within a C# application.
	Apply editing and PDF generation functionality in C#
	Convert URLs to PDF without losing any formatting

Overview
How to Convert HTML to PDF in C#
	Download and install the HTML to PDF C# library
	Create a PDF with an HTML String
	Use the RenderHtmlAsPdf method to convert an HTML String to a PDF
	Export a PDF using existing URL
	Generate a PDF from a HTML page
	Add Custom Headers and Footers
	Call SaveAs to save the PDF file to the computer
	More

HTML to PDF Converter for C# & VB.NET
Creating PDF files programmatically in .NET can be a frustrating task. The PDF document file format was designed more for printers than for developers. And C# doesn't have many suitable libraries or features for PDF generation built-in, many of the libraries that are on the market do not work out-of-the-box, and cause further frustration when they require multiple lines of code to accomplish a simple task.
The C# HTML to PDF conversion tool we will be using in this tutorial is IronPDF by Iron Software, a highly popular C# PDF generation and editing library. This library has comprehensive PDF editing and generation functionality, works completely out-of-the-box, does exactly what you need it to do in the least amount of lines, and has outstanding documentation of its 50+ features. IronPDF stands out in that it supports .NET 5, .NET 6, and .NET 7, .NET Core, Standard, and Framework on Windows, macOS, Linux, Docker, Azure, and AWS.
With C# and IronPDF, the logic to "generate a PDF document" or "HTML to PDF conversion" is straightforward. Becuase of IronPDF's advanced Chrome Renderer, most or all of the PDF document design and layout will use existing HTML assets.
This method of dynamic PDF generation in .NET with HTML5 works equally well in console applications, windows forms applications, WPF, as well as websites and MVC.
IronPDF also supports debugging of your HTML with Chrome for Pixel Perfect PDFs. A tutorial for setting this up can be found here.
VB.NET : Convert HTML to PDF
IronPDF is a C# Library that allows developers to create PDF documents easily in C#, F#, and VB.NET for .NET Core and .NET Framework. This ensures that we, as .NET coders, do not need to learn proprietary file formats or new APIs. We can easily output dynamic PDF files from our programs and web applications.
To learn about using IronPDF on VB.NET view our guide.
To learn about using IronPDF on F# view our guide.
IronPDF Features:
	Generating PDFs from: HTML, URL, JavaScript, CSS and many image formats
	Adding headers/footers, signatures, attachments, and passwords and security
	Performance optimization: Full Multithreading and Async support

Step 1
Download and Install the HTML to PDF C# Library

Install with NuGet

Install-Package IronPdf

nuget.org/packages/IronPdf/

or

Download DLL

 Download DLLManually install into your project

Visual Studio - NuGet Package Manager
In Visual Studio, right click on your project solution explorer and select Manage NuGet Packages..., From there simply search for IronPDF and install the latest version to your solution... click OK to any dialog boxes that come up. This will also work just as well in VB.NET projects.
Install-Package IronPdf

IronPDF on NuGet Website
For a comprehensive rundown of IronPDF's features, compatibility and downloads, please check out IronPDF on NuGet's official website: https://www.nuget.org/packages/IronPdf
Install via DLL
Another option is to install the IronPDF DLL directly. IronPDF can be downloaded and manually installed to the project or GAC from https://ironpdf.com/packages/IronPdf.zip

How to Tutorials
Create a PDF with an HTML String in C# .NET
How to: Convert HTML String to PDF? It is a very efficient and rewarding skill to create a new PDF file in C#.
We can simply use the ChromePdfRenderer.RenderHtmlAsPdf method to turn any HTML (HTML5) string into a PDF. C# HTML to PDF rendering is undertaken by a fully functional version of the Google Chromium engine, embedded within IronPDF DLL.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-1.cs

using IronPdf;

var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderHtmlAsPdf("<h1> Hello IronPdf </h1>");
pdf.SaveAs("pixel-perfect.pdf");
Imports IronPdf

Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderHtmlAsPdf("<h1> Hello IronPdf </h1>")
pdf.SaveAs("pixel-perfect.pdf")

VB C#

RenderHtmlAsPdf fully supports HTML5, CSS3, JavaScript, and Images. If these assets are on a hard disk, we may wish to set the second parameter of RenderHtmlAsPdf to the directory of the assets.
IronPDF will render your HTML exactly as it appears in Chrome
We have a full tutorial dedicated to allowing you to set up Chrome for full HTML debugging to make sure the changes you see there when editing your HTML, CSS, and JavaScript are pixel-perfect the same as the output PDF from IronPDF when you choose to render. Please find the tutorial here: How to Debug HTML in Chrome to Create Pixel Perfect PDFs.
BaseUrlPath:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-2.cs

using IronPdf;

// this will render C:\MyProject\Assets\image1.png
var pdf = renderer.RenderHtmlAsPdf("", @"C:\MyProject\Assets\");
Imports IronPdf

' this will render C:\MyProject\Assets\image1.png
Private pdf = renderer.RenderHtmlAsPdf("", "C:\MyProject\Assets\")

VB C#

All referenced CSS stylesheets, images and JavaScript files will be relative to the BaseUrlPath and can be kept in a neat and logical structure. You may also, of course opt to reference images, stylesheets and assets online, including web-fonts such as Google Fonts and even jQuery.

Export a PDF Using Existing URL
(URL to PDF)
Rendering existing URLs as PDFs with C# is very efficient and intuitive. This also allows teams to split PDF design and back-end PDF rendering work across multiple teams.
Lets render a page from Wikipedia.com in the following example:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-3.cs

using IronPdf;

// Create a PDF from any existing web page
var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/PDF");
pdf.SaveAs("wikipedia.pdf");
Imports IronPdf

' Create a PDF from any existing web page
Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderUrlAsPdf("https://en.wikipedia.org/wiki/PDF")
pdf.SaveAs("wikipedia.pdf")

VB C#

You will notice that hyperlinks and even HTML forms are preserved within the PDF generated by our C# code.
When rendering existing web pages we have some tricks we may wish to apply:
Print and Screen CSS
In modern CSS3 we have css directives for both print and screen. We can instruct IronPDF to render "Print" CSSs which are often simplified or overlooked. By default "Screen" CSS styles will be rendered, which IronPDF users have found most intuitive.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-4.cs

using IronPdf;
using IronPdf.Rendering;

renderer.RenderingOptions.CssMediaType = PdfCssMediaType.Screen;
// or
renderer.RenderingOptions.CssMediaType = PdfCssMediaType.Print;
Imports IronPdf
Imports IronPdf.Rendering

renderer.RenderingOptions.CssMediaType = PdfCssMediaType.Screen
' or
renderer.RenderingOptions.CssMediaType = PdfCssMediaType.Print

VB C#

Main Page: A full comparison with images of Screen and Print can be found here.
JavaScript
IronPDF supports JavaScript, jQuery and even AJAX. We may need to instruct IronPDF to wait for JS or ajax to finish running before rendering a snapshot of our web-page.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-5.cs

renderer.RenderingOptions.EnableJavaScript = true;
renderer.RenderingOptions.WaitFor.RenderDelay(500); // milliseconds
IRON VB CONVERTER ERROR developers@ironsoftware.com

VB C#

We can demonstrate compliance with the JavaScript standard by rendering an advanced d3.js JavaScript chord chart from a CSV dataset like this:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-6.cs

using IronPdf;

// Create a PDF Chart a live rendered dataset using d3.js and javascript
var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderUrlAsPdf("https://bl.ocks.org/mbostock/4062006");
pdf.SaveAs("chart.pdf");
Imports IronPdf

' Create a PDF Chart a live rendered dataset using d3.js and javascript
Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderUrlAsPdf("https://bl.ocks.org/mbostock/4062006")
pdf.SaveAs("chart.pdf")

VB C#

Responsive CSS
HTML to PDF using response CSS in .NET! Responsive web pages are designed to be viewed in a browser. IronPDF does not open a real browser window within your server's OS. This can lead to responsive elements rendering at their smallest size.
We recommend using Print css media types to navigate this issue. Print CSS should not normally be responsive.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-7.cs

renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;
renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print

VB C#

Generate a PDF from a HTML Page
We can also render any HTML page to PDF on our hard disk. All relative assets such as CSS, images and js will be rendered as if the file had been opened using the file:// protocol.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-8.cs

using IronPdf;

// Create a PDF from an existing HTML using C#
var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderHtmlFileAsPdf("Assets/TestInvoice1.html");
pdf.SaveAs("Invoice.pdf");
Imports IronPdf

' Create a PDF from an existing HTML using C#
Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderHtmlFileAsPdf("Assets/TestInvoice1.html")
pdf.SaveAs("Invoice.pdf")

VB C#

This method has the advantage of allowing the developer the opportunity to test the HTML content in a browser during development. We recommend Chrome as it is the web browser on which IronPDF's rendering engine is based.
To convert XML to PDF you can use XSLT templating to print your XML content to PDF.

Add Custom Headers and Footers
Headers and footers can be added to PDFs when they are rendered, or to existing PDF files using IronPDF.
With IronPDF, Headers and footers can contain simple text based content using the SimpleHeaderFooter class - or with images and rich HTML content using the HtmlHeaderFooter class.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-9.cs

using IronPdf;

// Create a PDF from an existing HTML
var renderer = new ChromePdfRenderer
{
 RenderingOptions =
 {
 MarginTop = 50, //millimeters
 MarginBottom = 50,
 CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print,
 TextHeader = new TextHeaderFooter
 {
 CenterText = "{pdf-title}",
 DrawDividerLine = true,
 FontSize = 16
 },
 TextFooter = new TextHeaderFooter
 {
 LeftText = "{date} {time}",
 RightText = "Page {page} of {total-pages}",
 DrawDividerLine = true,
 FontSize = 14
 }
 }
};

var pdf = renderer.RenderHtmlFileAsPdf("assets/TestInvoice1.html");
pdf.SaveAs("Invoice.pdf");

// This neat trick opens our PDF file so we can see the result
System.Diagnostics.Process.Start("Invoice.pdf");
Imports IronPdf

' Create a PDF from an existing HTML
Private renderer = New ChromePdfRenderer With {
	.RenderingOptions = {
		MarginTop = 50, MarginBottom = 50, CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print, TextHeader = New TextHeaderFooter With {
			.CenterText = "{pdf-title}",
			.DrawDividerLine = True,
			.FontSize = 16
		},
		TextFooter = New TextHeaderFooter With {
			.LeftText = "{date} {time}",
			.RightText = "Page {page} of {total-pages}",
			.DrawDividerLine = True,
			.FontSize = 14
		}
	}
}

Private pdf = renderer.RenderHtmlFileAsPdf("assets/TestInvoice1.html")
pdf.SaveAs("Invoice.pdf")

' This neat trick opens our PDF file so we can see the result
System.Diagnostics.Process.Start("Invoice.pdf")

VB C#

HTML Headers and Footers
The HtmlHeaderFooter class allows for rich headers and footers to be generated using HTML5 content which may even include images, stylesheets and hyperlinks.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-10.cs

using IronPdf;

renderer.RenderingOptions.HtmlFooter = new HtmlHeaderFooter
{
 HtmlFragment = "<div style='text-align:right'><em style='color:pink'>page {page} of {total-pages}</div>"
};
Imports IronPdf

renderer.RenderingOptions.HtmlFooter = New HtmlHeaderFooter With {.HtmlFragment = "<div style='text-align:right'><em style='color:pink'>page {page} of {total-pages}</div>"}

VB C#

Dynamic Data in PDF Headers and Footers
We may "mail-merge" content into the text and even HTML of headers and footers using placeholders such as:
	{page} for the current page number
	{total-pages} for the total number of pages in the PDF
	{url} for the URL of the rendered PDF if rendered from a web page
	{date} for today's date
	{time} for the current time
	{html-title} for the title attribute of the rendered HTML document
	{pdf-title} for the document title, which may be set via ChromePdfRenderOptions

C# HTML to PDF Conversion Settings
There are many nuances to how our users and clients may expect PDF content to be rendered.
The ChromePdfRenderer class contains a RenderingOptions property which can be used to set these options.
For example we may wish to choose to only accept "print" style CSS3 directives:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-11.cs

using IronPdf;

renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print;
Imports IronPdf

renderer.RenderingOptions.CssMediaType = IronPdf.Rendering.PdfCssMediaType.Print

VB C#

We may also wish to change the size of our print margins to create more whitespace on the page, to make room for large headers or footers, or even set zero margins for commercial printing of brochures or posters:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-12.cs

using IronPdf;

renderer.RenderingOptions.MarginTop = 50; // millimeters
renderer.RenderingOptions.MarginBottom = 50; // millimeters
Imports IronPdf

renderer.RenderingOptions.MarginTop = 50 ' millimeters
renderer.RenderingOptions.MarginBottom = 50 ' millimeters

VB C#

We may wish to turn on or off background images from HTML elements:
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-13.cs

using IronPdf;

renderer.RenderingOptions.PrintHtmlBackgrounds = true;
Imports IronPdf

renderer.RenderingOptions.PrintHtmlBackgrounds = True

VB C#

It is also possible to set our output PDFs to be rendered on any virtual paper size - including portrait and landscape sizes and even custom sizes which may be set in millimeters or inches.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-14.cs

using IronPdf;
using IronPdf.Rendering;

renderer.RenderingOptions.PaperSize = PdfPaperSize.A4;
renderer.RenderingOptions.PaperOrientation = PdfPaperOrientation.Landscape;
Imports IronPdf
Imports IronPdf.Rendering

renderer.RenderingOptions.PaperSize = PdfPaperSize.A4
renderer.RenderingOptions.PaperOrientation = PdfPaperOrientation.Landscape

VB C#

Full documentation of the HTML C# PDF Creator Settings may be found at https://ironpdf.com/object-reference/api/IronPdf.ChromePdfRenderer.html
The full set of PDF Print Options includes:
	CreatePdfFormsFromHtml Turns all HTML forms elements into editable PDF forms.
	CssMediaType Screen or Print CSS Styles and StyleSheets. See our full in-depth tutorial with comparison images.
	CustomCssUrl Allows a custom CSS style-sheet to be applied to HTML before rendering. May be a local file path, or a remote URL.
	DPI Printing output Dots Per Inch (DPI). 300 is standard for most print jobs. Higher resolutions produce clearer images and text, but also larger PDF files.
	EnableJavaScript Enables JavaScript and JSON to be executed before the page is rendered. Ideal for printing from Ajax / Angular Applications. Also see RenderDelay.
	FirstPageNumber First page number to be used in PDF headers and footers.
	FitToPaper Where possible, zooms the PDF content to 1 page width.
	TextFooter Sets the footer content for every PDF page as a String. Supports 'mail-merge'
	TextHeader Sets the header content for every PDF page as a String. Supports 'mail-merge'
	HtmlFooter Sets the footer content for every PDF page as HTML
	HtmlHeader Sets the header content for every PDF page as HTML
	MarginBottom Paper margin in millimeters. Set to zero for border-less and commercial printing applications
	MarginLeft Paper margin in millimeters
	MarginRight Paper margin in millimeters
	MarginTop Paper margin in millimeters. Set to zero for border-less and commercial printing applications
	PdfPaperOrientation Paper orientation for new document. Full explanation and accompanying code example.
	PageRotation Page rotation from existing document. Full explanation and accompanying code example.
	PaperSize Set an output paper size for PDF pages. System.Drawing.Printing.PaperKind. Use SetCustomPaperSize(int width, int height) for custom sizes.
	PrintHtmlBackgrounds Prints background-colors and images from HTML.
	RenderDelay Milliseconds delay to wait after HTML is rendered before printing. This can use useful when considering the rendering of JavaScript, Ajax or animations.
	Title PDF Document Name and Title meta-data. Not required.
	Zoom The zoom level in %. Enlarges the rendering size of HTML documents.

Apply HTML Templating
To template or "batch create" PDFs is a common requirement for Internet and website developers.
Rather than templating a PDF document itself, with IronPDF we can template our HTML using existing, well tried technologies. When the HTML template is combined with data from a query-string or database we end up with a dynamically generated PDF document.
In the simplest instance, using the C# String.Format method is effective for basic "mail-merge"
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-15.cs

using System;

String.Format("<h1>Hello {0} !</h1>", "World");
Imports System

String.Format("<h1>Hello {0} !</h1>", "World")

VB C#

If the HTML file is longer, often we can use arbitrary placeholders such as [[NAME]] and replace them with real data later.
The following example will create 3 PDFs, each personalized to a user.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-16.cs

var htmlTemplate = "<p>[[NAME]]</p>";
var names = new[] { "John", "James", "Jenny" };
foreach (var name in names)
{
 var htmlInstance = htmlTemplate.Replace("[[NAME]]", name);
 var pdf = renderer.RenderHtmlAsPdf(htmlInstance);
 pdf.SaveAs(name + ".pdf");
}
Dim htmlTemplate = "<p>[[NAME]]</p>"
Dim names = { "John", "James", "Jenny" }
For Each name In names
	Dim htmlInstance = htmlTemplate.Replace("[[NAME]]", name)
	Dim pdf = renderer.RenderHtmlAsPdf(htmlInstance)
	pdf.SaveAs(name & ".pdf")
Next name

VB C#

Advanced Templating With Handlebars.NET
A sophisticated method to merge C# data with HTML for PDF generation is using the Handlebars Templating standard.
Handlebars makes it possible to create dynamic HTML from C# objects and class instances including database records. Handlebars is particularly effective where a query may return an unknown number of rows such as in the generation of an invoice.
We must first add an additional NuGet Package to our project: https://www.nuget.org/packages/Handlebars.NET/
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-17.cs

var source =
 @"<div class=""entry"">
 <h1>{{title}}</h1>
 <div class=""body"">
 {{body}}
 </div>
 </div>";
var template = Handlebars.Compile(source);

var data = (title: "My new post", body: "This is my first post!");

var result = template(data);

/* Would render:
<div class="entry">
 <h1>My New Post</h1>
 <div class="body">
 This is my first post!
 </div>
</div>
*/
Dim source = "<div class=""entry"">
 <h1>{{title}}</h1>
 <div class=""body"">
 {{body}}
 </div>
 </div>"
Dim template = Handlebars.Compile(source)

Dim data = (title:= "My new post", body:= "This is my first post!")

Dim result = template(data)

' Would render:
'<div class="entry">
' <h1>My New Post</h1>
' <div class="body">
' This is my first post!
' </div>
'</div>
'

VB C#

To render this HTML we can simply use the RenderHtmlAsPdf method.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-18.cs

using IronPdf;

var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderHtmlAsPdf(htmlInstance);
pdf.SaveAs("Handlebars.pdf");
Imports IronPdf

Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderHtmlAsPdf(htmlInstance)
pdf.SaveAs("Handlebars.pdf")

VB C#

You can learn more about the handlebars html templating standard and its C# using from https://github.com/rexm/Handlebars.NET
Add Page Breaks using HTML5
A common requirement in a PDF document is for pagination. Developers need to control where PDF pages start and end for a clean, readable layout.
The easiest way to do this is with a less known CSS trick which will render a page break into any printed HTML document.
<div style='page-break-after: always;'> </div>

<div style='page-break-after: always;'> </div>

HTML

The provided HTML works, but is hardly best practice. We found this example to be very helpful in our understanding of a neat and tidy way to lay out multipage HTML content.
<!DOCTYPE html>
<!--https://stackoverflow.com/questions/1630819/google-chrome-printing-page-breaks-->
<html>
 <head>
 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
 <title>Paginated HTML</title>
 <style type="text/css" media="print">
 div.page
 {
 page-break-after: always;
 page-break-inside: avoid;
 }
 </style>
 </head>
 <body>
 <div class="page">
 <h1>This is Page 1</h1>
 </div>
 <div class="page">
 <h1>This is Page 2</h1>
 </div>
 <div class="page">
 <h1>This is Page 3</h1>
 </div>
 </body>
</html>

<!DOCTYPE html>
<!--https://stackoverflow.com/questions/1630819/google-chrome-printing-page-breaks-->
<html>
 <head>
 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
 <title>Paginated HTML</title>
 <style type="text/css" media="print">
 div.page
 {
 page-break-after: always;
 page-break-inside: avoid;
 }
 </style>
 </head>
 <body>
 <div class="page">
 <h1>This is Page 1</h1>
 </div>
 <div class="page">
 <h1>This is Page 2</h1>
 </div>
 <div class="page">
 <h1>This is Page 3</h1>
 </div>
 </body>
</html>

HTML

The How-To outline more tips and tricks with Page Breaks

Attach a Cover Page to a PDF
IronPDF makes it easy to Merge PDF documents. The most common usage of this technique is to add a cover page or back page to an existing rendered PDF document.
To do so, we first render a cover page, and then use the PdfDocument.Merge() static method to combine the 2 documents.
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-19.cs

using IronPdf;

var pdf = renderer.RenderUrlAsPdf("https://www.nuget.org/packages/IronPdf/");
var pdfMerged = PdfDocument.Merge(new PdfDocument("CoverPage.pdf"), pdf).SaveAs("Combined.Pdf");
Imports IronPdf

Private pdf = renderer.RenderUrlAsPdf("https://www.nuget.org/packages/IronPdf/")
Private pdfMerged = PdfDocument.Merge(New PdfDocument("CoverPage.pdf"), pdf).SaveAs("Combined.Pdf")

VB C#

A full code example can be found here: PDF Cover Page Code Example

Add a Watermark
A final C# PDF feature that IronPDF supports is to add a watermark to documents. This can be used to add a notice to each page that a document is "confidential" or a "sample".
:path=/static-assets/pdf/content-code-examples/tutorials/html-to-pdf-20.cs

using IronPdf;
using IronPdf.Editing;

var renderer = new ChromePdfRenderer();
var pdf = renderer.RenderUrlAsPdf("https://www.nuget.org/packages/IronPdf");
// Watermarks all pages with red "SAMPLE" text at a custom location.
// Also adding a link to the watermark on-click
pdf.ApplyWatermark("<h2 style='color:red'>SAMPLE</h2>", 0, VerticalAlignment.Middle, HorizontalAlignment.Center);
pdf.SaveAs(@"C:\Path\To\Watermarked.pdf");
Imports IronPdf
Imports IronPdf.Editing

Private renderer = New ChromePdfRenderer()
Private pdf = renderer.RenderUrlAsPdf("https://www.nuget.org/packages/IronPdf")
' Watermarks all pages with red "SAMPLE" text at a custom location.
' Also adding a link to the watermark on-click
pdf.ApplyWatermark("<h2 style='color:red'>SAMPLE</h2>", 0, VerticalAlignment.Middle, HorizontalAlignment.Center)
pdf.SaveAs("C:\Path\To\Watermarked.pdf")

VB C#

A full code example can be found here: PDF Watermarking Code Example

Download C# Source Code
The full free HTML to PDF converter C# Source Code for this tutorial is available to download as a zipped Visual Studio 2017 project file. It will use its rendering engine to generate PDF document objects in C#.
Download this tutorial as a Visual Studio project
The free download contains everything you need to create a PDF from HTML - including working C# PDF code examples code for:
	Convert an HTML String to PDF using C#
	HTML File to PDF in C# (supporting CSS, JavaScript and images)
	C# HTML to PDF using a URL ("URL to PDF")
	C# PDF editing and settings examples
	Rendering JavaScript canvas charts such as d3.js to a PDF
	The PDF Library for C#

Class Reference
Developers may also be interested in the IronPdf.PdfDocument Class reference:
https://ironpdf.com/object-reference/api/IronPdf.PdfDocument.html
This object model shows how PDF documents may be:
	Encrypted and password protected
	Edited or 'stamped' with new HTML content
	Enhanced with foreground and background images
	Merged, joined, truncated and spliced at a page or document level
	OCR processed to extract plain text and images

Blazor HTML to PDF
Adding HTML to PDF functionality to your Blazor server is easy, simply:
	Create a new Blazor server project or use an existing one
	Add the IronPDF library to your project using NuGet
	Add a new Razor Component or use an existing one
	Add a InputTextArea and link it to IronPDF
	Let IronPDF take care of the rest and deploy

The full step-by-step guide with pictures and code examples can be found here.

Compare with Other PDF Libraries
PDFSharp
PDFSharp is a free open source library which allows logical editing and creation of PDF documents in .NET.
A key difference between PDFSharp and IronPDF is that IronPDF has an embedded Web Browser which allows faithful creation of PDFs from HTML, CSS, JS and images.
The IronPDF API also differs from PDFSharp in that it is based around use cases rather than the technical structure of PDF documents. Many find this more logical and intuitive to use.
It can convert HTML to PDF, but HTML to PDF conversion is limited: including .html files to PDF files.
wkhtmltopdf
wkhtmltopdf is a free, open source library written in C++ which allows PDF documents to be rendered from HTML.
A key difference between wkhtmltopdf and IronPDF is that IronPDF is written in C# and is stable and thread safe for use in .NET applications and Websites.
IronPDF also fully supports CSS3 and HTML5, where as wkhtmltopdf is almost a decade out of date.
The IronPDF API also differs from wkhtmltopdf in that it has a large and advanced API allowing PDF documents to be edited, manipulated, compressed, imported, exported, signed, secured and watermarked.
HTML to PDF conversion with wkhtmltopdf is stable but utilizes a very outdated rendering engine.
iTextSharp
iTextSharp is an open source partial port of the iText java library for PDF generation and editing. Convert HTML to PDF- that is possible, but I notice its rendering was limited to what is available in Java or uses HTML to PDF conversion from wkhtmltopdf under the LGPL open sourced license.
A key difference with HTML to PDF between C# iTextSharp and IronPDF is that IronPDF has more advanced and accurate HTML-To-PDF rendering by using an embedded Chrome based web browser rather than the legacy wkhtmltopdf used in iText.
The IronPDF API also differs from iTextSharp in that IronPDF has explicit licenses for commercial or private usage, whereas iTextSharp's AGLP license is only suitable for applications where the full source code is presented for free to every user - even users across the internet.
A full breakdown of the differences is available in our iTextSharp C# documentation page.
Other Commercial Libraries
Aspose PDF, Spire PDF, EO PDF, and SelectPdf are competitor .NET commercial PDF libraries by other vendors. IronPDF has a comparatively strong feature set, excellent compatibility, well-written documentation, and a fair price point. You can see the comparison between IronPDF, competitors, and Chrome itself here.

Watch HTML to PDF Tutorial Video

Tutorial Quick Access

Download this Tutorial as C# Source Code
The full free HTML to PDF C# Source Code for this tutorial is available to download as a zipped Visual Studio project file.
 Download

Explore this Tutorial on GitHub
The source code for this project is available in C# and VB.NET on GitHub.
Use this code as an easy way to get up and running in just a few minutes. The project is saved as a Microsoft Visual Studio 2017 project, but is compatible with any .NET IDE.
C# HTML to PDF VB.NET HTML to PDF

Download the C# PDF Quickstart guide
To make developing PDFs in your .NET applications easier, we have compiled a quick-start guide as a PDF document. This "Cheat-Sheet" provide quick access to common functions and examples for generating and editing PDFs in C# and VB.NET - and may help save time in getting started using IronPDF in your .NET project.
 Download

View the API Reference
Explore the API Reference for IronPDF, outlining the details of all of IronPDF’s features, namespaces, classes, methods fields and enums.
View the API Reference

Jean Ashberg
.NET Software Engineer
Jean is an independent software developer for corporate internal information solutions based in Massachusetts, USA.

Jean was an early adopter of IronPDF, and has repeatedly been involved in ‘speccing-out’ product improvement and building a roadmap to creating a single stable library for C# that covers all major PDF product feature use cases.

View the IronPDF YouTube Playlist

On This Page
	HTML to PDF Converter for C# & VB.NET
	Download and Install the HTML to PDF C# Library	Visual Studio - NuGet Package Manager
	IronPDF on NuGet Website
	Install via DLL

	Create a PDF with an HTML String in C# .NET	IronPDF will render your HTML exactly as it appears in Chrome

	Export a PDF Using Existing URL	Print and Screen CSS
	JavaScript
	Responsive CSS

	Generate a PDF from a HTML Page
	Add Custom Headers and Footers	HTML Headers and Footers
	Dynamic Data in PDF Headers and Footers

	C# HTML to PDF Conversion Settings
	Apply HTML Templating	Advanced Templating With Handlebars.NET
	Add Page Breaks using HTML5

	Attach a Cover Page to a PDF
	Add a Watermark
	Download C# Source Code	Class Reference

	Blazor HTML to PDF
	Compare with Other PDF Libraries
	Watch HTML to PDF Tutorial Video

Was This Page Useful?
	 Join our Bug Bounty for Iron Swag

Tutorial Downloads
	Download IronPDF C# Library
	Download PDF Cheat Sheet
	Download this Tutorial as Code
	Explore this Tutorial on GitHub

Get your FREE
30-day Trial Key instantly.
15-day Trial Key instantly.

No credit card or account creation required

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Test in production
without watermarks
30 days fully
functional product
24/5 technical
support during trial

Try IronPDF for Free
Get Set Up in 5 Minutes

Install with NuGet
Version: 2024.2

Install-Package IronPdf

nuget.org/packages/IronPdf/

	In Solution Explorer, right-click References, Manage NuGet Packages
	Select Browse and search "IronPdf"
	Select the package and install

Download DLL
Version: 2024.2

 Download Nowor download Windows Installer here.

	Download and unzip IronPDF to a location such as ~/Libs within your Solution directory
	In Visual Studio Solution Explorer, right click References. Select Browse, "IronPdf.dll"

Licenses from $749

Have a question? Get in touch with our development team.

15 1000 1

Now that you’ve downloaded IronPDF
Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
30 days fully functional product
24/5 technical support during trial

Get your free 30-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Thank you.
View your license options:
Thank you.
If you'd like to speak to our licensing team:
View Licensing
 Schedule a call
Have a question? Get in touch with our development team.
Have a question? Get in touch with our development team.

15 1000 1

Now that you’ve downloaded IronPDF
Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
15 days fully functional product
24/5 technical support during trial

Get your free 15-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
30 days fully functional product
24/5 technical support during trial

Get your free 30-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Want to deploy IronPDF to a live project for FREE?
Not ready to buy?
Want to deploy IronPDF to a live project for FREE?
What’s included?
Test in production without watermarks
15 days fully functional product
24/5 technical support during trial

Get your free 15-day Trial Key instantly.
Thank you.
If you'd like to speak to our licensing team:

The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

 Schedule a call
Have a question? Get in touch with our development team.
No credit card or account creation required

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Download IronPDF free to apply
your Trial Licenses Key
Thank you.
If you'd like to speak to our licensing team:
 Install with NuGet View Licensing
 Schedule a call
Licenses from $749. Have a question? Get in touch.
Have a question? Get in touch with our development team.

15 1000 1

Your Trial License Key has been emailed to you.
Not ready to buy?

Download IronPDF free to apply
your Trial Licenses Key
Thank you.
If you'd like to speak to our licensing team:
 Install with NuGet View Licensing
 Schedule a call
Licenses from $749. Have a question? Get in touch.
Have a question? Get in touch with our development team.

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

No credit card or account creation required
The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

Install with NuGet
View Licensing

Licenses from $749. Have a question? Get in touch.

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

Get started for FREE
No credit card required
Test in a live environment
Test in production without watermarks.
Works wherever you need it to.

Fully-functional product
Get 30 days of fully functional product.
Have it up and running in minutes.

24/5 technical support
Full access to our support engineering team during your product trial

Get your free 30-day Trial Key instantly.

No credit card or account creation required
The trial form was submitted
successfully.
Your trial key should be in the email.
If it is not, please contact
support@ironsoftware.com

Trusted by Over 2 Million Engineers Worldwide
	
	
	
	
	
	

 Start for Free Free NuGet DownloadFully-functional product, get the key instantly

 PM > Install-Package IronPdf

IronPDF is a part of IRONSUITE
9 .NET API products for your office documents
Get 9 products for the price of 2
Get 9 products for the price of 2
 Start Free Trial

	

- Create, read, and edit PDFs. HTML to PDF for NET.

	

- Edit DOCX Word Files. No Office Interop required.

	

- Edit Excel & CSV files. No Office Interop required.

	

- OCR (extract text from images) in 127 languages.

	

- Read and write QR & Barcodes.

	

- Read and write QR codes.

	

- Zip and unzip archives

	

- Print documents in .NET applications

	

- Scrape structured data from websites.

When you need your PDF to look like HTML, fast.

Search
CtrlK

Documentation
	Code Examples
	API Reference
	How-Tos
	Features
	Blog
	Credits
	Product Brochure

Tutorials
	Get Started
	HTML to PDF
	Editing PDFs in C#
	Debug HTML with Chrome
	ASPX to PDF
	VB.NET to PDF

Licensing
	Buy a License
	Support Extensions
	Resellers
	License Keys
	EULA

Try IronPDF Free
	 Download on NuGet
	 Download DLL

	 Download Windows Installer

	 Start Free Trial

When you need your PDF to look like HTML, fast.
When you need to create, edit, and format Word documents, fast.
The Excel API you need, without the Office Interop hassle.
Tesseract 5 OCR in the languages you need, We support 127+.
When you need to read, write, and style Barcodes, fast.
When you need to read, write, and style QR codes, fast.
When you need to zip and unzip archives, fast.
When you need to print documents, fast.
The power you need to scrape & output clean, structured data.
The complete .NET Suite for your office.

	IRONSUITE
	|
	IRONPDF
	IRONWORD
	IRONXL
	IRONOCR
	IRONBARCODE
	IRONQR
	IRONZIP
	IRONPRINT
	IRONWEBSCRAPER

205 N. Michigan Ave. Chicago, IL 60611 USA +1 (312) 500-3060

	About Us
	News
	Customers
	Careers
	Contact Us
	 Join Iron Slack

Copyright © Iron Software LLC 2013-2024
	Terms
	Privacy

Thank you!
Your license key has been delivered to the email provided. Contact us

24-Hour Upgrade Offer:
Save 50% on a
Professional Upgrade

Go Professional to cover 10 developers
and unlimited projects.
 hours
:
 minutes
:
 seconds

Upgrade to Professional

Upgrade

Professional
$600 USD
$299 USD

	10 developers
	10 locations
	10 projects

TODAY ONLY

5 .NET Products for the Price of 2

 Total Suite Value:
$7,192 USD

Upgrade price
TODAY
ONLY
$499 USD

After 24 Hrs
$1,098 USD

